一、高亮的一些问题

elasticsearch提供了三种高亮方式,前面我们已经简单的了解了elasticsearch的高亮原理; 高亮处理跟实际使用查询类型有十分紧密的关系,其中主要的一点就是muti term 查询的重写,例如wildcard、prefix等,由于查询本身和高亮都涉及到查询语句的重写,如果两者之间的重写机制不同,那么就可能会碰到以下情况

相同的查询语句, 使用unified和fvh得到的高亮结果是不同的,甚至fvh Highlighter无任何高亮信息返回;

二、数据环境

elasticsearch 8.0

PUT highlight_test {   "mappings": {     "properties": {       "text":{         "type": "text",         "term_vector": "with_positions_offsets"       }     }   },   "settings": {     "number_of_replicas":0,     "number_of_shards": 1   } }  PUT highlight_test/_doc/1 {   "name":"mango",   "text":"my name is mongo, i am test hightlight in elastic search" }

三、muti term查询重写简介

所谓muti term查询就是查询中并不是明确的关键字,而是需要elasticsearch重写查询语句,进一步明确关键字;以下查询会涉及到muti term查询重写;

fuzzy prefix query_string regexp wildcard

以上查询都支持rewrite参数,最终将查询重写为bool查询或者bitset;

查询重写主要影响以下几方面

重写需要抓取哪些关键字以及抓取的数量;

抓取关键字的相关性计算方式;

查询重写支持以下参数选项

constant_score,默认值,如果需要抓取的关键字比较少,则重写为bool查询,否则抓取所有的关键字并重写为bitset;直接使用boost参数作为文档score,一般term level的查询的boost默认值为1;

constant_score_boolean,将查询重写为bool查询,并使用boost参数作为文档的score,受到indices.query.bool.max_clause_count 限制,所以默认最多抓取1024个关键字;

scoring_boolean,将查询重写为bool查询,并计算文档的相对权重,受到indices.query.bool.max_clause_count 限制,所以默认最多抓取1024个关键字;

top_terms_blended_freqs_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;选择命中文档的所有关键字中权重最大的作为文档的score;

top_terms_boost_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;直接使用boost作为文档的score;

top_terms_N,抓取得分最高的前N个关键字,并将查询重写为bool查询;此选项不受indices.query.bool.max_clause_count 限制;计算命中文档的相对权重作为评分;

三、wildcard查询重写分析

我们通过elasticsearch来查看一下以下查询语句的重写逻辑;

{     "query":{         "wildcard":{             "text":{                 "value":"m*"             }         }     } }

通过查询使用的字段映射类型构建WildCardQuery,并使用查询语句中配置的rewrite对应的MultiTermQuery.RewriteMethod;

//WildcardQueryBuilder.java @Override protected Query doToQuery(SearchExecutionContext context) throws IOException {     MappedFieldType fieldType = context.getFieldType(fieldName);      if (fieldType == null) {         throw new IllegalStateException("Rewrite first");     }      MultiTermQuery.RewriteMethod method = QueryParsers.parseRewriteMethod(rewrite, null, LoggingDeprecationHandler.INSTANCE);     return fieldType.wildcardQuery(value, method, caseInsensitive, context); }

根据查询语句中配置的rewrite,查找对应的MultiTermQuery.RewriteMethod,由于我们没有在wildcard查询语句中设置rewrite参数,这里直接返回null;

//QueryParsers.java public static MultiTermQuery.RewriteMethod parseRewriteMethod(     @Nullable String rewriteMethod,     @Nullable MultiTermQuery.RewriteMethod defaultRewriteMethod,     DeprecationHandler deprecationHandler ) {     if (rewriteMethod == null) {         return defaultRewriteMethod;     }     if (CONSTANT_SCORE.match(rewriteMethod, deprecationHandler)) {         return MultiTermQuery.CONSTANT_SCORE_REWRITE;     }     if (SCORING_BOOLEAN.match(rewriteMethod, deprecationHandler)) {         return MultiTermQuery.SCORING_BOOLEAN_REWRITE;     }     if (CONSTANT_SCORE_BOOLEAN.match(rewriteMethod, deprecationHandler)) {         return MultiTermQuery.CONSTANT_SCORE_BOOLEAN_REWRITE;     }      int firstDigit = -1;     for (int i = 0; i < rewriteMethod.length(); ++i) {         if (Character.isDigit(rewriteMethod.charAt(i))) {             firstDigit = i;             break;         }     }      if (firstDigit >= 0) {         final int size = Integer.parseInt(rewriteMethod.substring(firstDigit));         String rewriteMethodName = rewriteMethod.substring(0, firstDigit);          if (TOP_TERMS.match(rewriteMethodName, deprecationHandler)) {             return new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(size);         }         if (TOP_TERMS_BOOST.match(rewriteMethodName, deprecationHandler)) {             return new MultiTermQuery.TopTermsBoostOnlyBooleanQueryRewrite(size);         }         if (TOP_TERMS_BLENDED_FREQS.match(rewriteMethodName, deprecationHandler)) {             return new MultiTermQuery.TopTermsBlendedFreqScoringRewrite(size);         }     }      throw new IllegalArgumentException("Failed to parse rewrite_method [" + rewriteMethod + "]"); } }

WildCardQuery继承MultiTermQuery,直接调用rewrite方法进行重写,由于我们没有在wildcard查询语句中设置rewrite参数,这里直接使用默认的CONSTANT_SCORE_REWRITE;

  //MultiTermQuery.java   protected RewriteMethod rewriteMethod = CONSTANT_SCORE_REWRITE;         @Override   public final Query rewrite(IndexReader reader) throws IOException {     return rewriteMethod.rewrite(reader, this);   }

可以看到CONSTANT_SCORE_REWRITE是直接使用的匿名类,rewrite方法返回的是MultiTermQueryConstantScoreWrapper的实例;

  //MultiTermQuery.java   public static final RewriteMethod CONSTANT_SCORE_REWRITE =       new RewriteMethod() {         @Override         public Query rewrite(IndexReader reader, MultiTermQuery query) {           return new MultiTermQueryConstantScoreWrapper<>(query);         }       };

在以下方法中,首先会得到查询字段对应的所有term集合;
然后通过 query.getTermsEnum获取跟查询匹配的所有term集合;
最后根据collectTerms调用的返回值决定是否构建bool查询还是bit set;

      //MultiTermQueryConstantScoreWrapper.java       private WeightOrDocIdSet rewrite(LeafReaderContext context) throws IOException {         final Terms terms = context.reader().terms(query.field);         if (terms == null) {           // field does not exist           return new WeightOrDocIdSet((DocIdSet) null);         }          final TermsEnum termsEnum = query.getTermsEnum(terms);         assert termsEnum != null;          PostingsEnum docs = null;          final List<TermAndState> collectedTerms = new ArrayList<>();         if (collectTerms(context, termsEnum, collectedTerms)) {           // build a boolean query           BooleanQuery.Builder bq = new BooleanQuery.Builder();           for (TermAndState t : collectedTerms) {             final TermStates termStates = new TermStates(searcher.getTopReaderContext());             termStates.register(t.state, context.ord, t.docFreq, t.totalTermFreq);             bq.add(new TermQuery(new Term(query.field, t.term), termStates), Occur.SHOULD);           }           Query q = new ConstantScoreQuery(bq.build());           final Weight weight = searcher.rewrite(q).createWeight(searcher, scoreMode, score());           return new WeightOrDocIdSet(weight);         }          // Too many terms: go back to the terms we already collected and start building the bit set         DocIdSetBuilder builder = new DocIdSetBuilder(context.reader().maxDoc(), terms);         if (collectedTerms.isEmpty() == false) {           TermsEnum termsEnum2 = terms.iterator();           for (TermAndState t : collectedTerms) {             termsEnum2.seekExact(t.term, t.state);             docs = termsEnum2.postings(docs, PostingsEnum.NONE);             builder.add(docs);           }         }          // Then keep filling the bit set with remaining terms         do {           docs = termsEnum.postings(docs, PostingsEnum.NONE);           builder.add(docs);         } while (termsEnum.next() != null);          return new WeightOrDocIdSet(builder.build());       }

调用collectTerms默认只会提取查询命中的16个关键字;

      //MultiTermQueryConstantScoreWrapper.java       private static final int BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD = 16;       private boolean collectTerms(           LeafReaderContext context, TermsEnum termsEnum, List<TermAndState> terms)           throws IOException {         final int threshold =             Math.min(BOOLEAN_REWRITE_TERM_COUNT_THRESHOLD, IndexSearcher.getMaxClauseCount());         for (int i = 0; i < threshold; ++i) {           final BytesRef term = termsEnum.next();           if (term == null) {             return true;           }           TermState state = termsEnum.termState();           terms.add(               new TermAndState(                   BytesRef.deepCopyOf(term),                   state,                   termsEnum.docFreq(),                   termsEnum.totalTermFreq()));         }         return termsEnum.next() == null;       }

通过以上分析wildcard查询默认情况下,会提取字段中所有命中查询的关键字;

四、fvh Highlighter中wildcard的查询重写

在muti term query中,提取查询关键字是高亮逻辑一个很重要的步骤;

我们使用以下高亮语句,分析以下高亮中提取查询关键字过程中的查询重写;

{     "query":{         "wildcard":{             "text":{                 "value":"m*"             }         }     },     "highlight":{         "fields":{             "text":{                 "type":"fvh"             }         }     } }

默认情况下只有匹配的字段才会进行高亮,这里构建CustomFieldQuery;

//FastVectorHighlighter.java if (field.fieldOptions().requireFieldMatch()) {     /*      * we use top level reader to rewrite the query against all readers,      * with use caching it across hits (and across readers...)      */     entry.fieldMatchFieldQuery = new CustomFieldQuery(         fieldContext.query,         hitContext.topLevelReader(),         true,         field.fieldOptions().requireFieldMatch()     ); }

通过调用flatten方法得到重写之后的flatQueries,然后将每个提取的关键字重写为BoostQuery;

  //FieldQuery.java   public FieldQuery(Query query, IndexReader reader, boolean phraseHighlight, boolean fieldMatch)       throws IOException {     this.fieldMatch = fieldMatch;     Set<Query> flatQueries = new LinkedHashSet<>();     flatten(query, reader, flatQueries, 1f);     saveTerms(flatQueries, reader);     Collection<Query> expandQueries = expand(flatQueries);      for (Query flatQuery : expandQueries) {       QueryPhraseMap rootMap = getRootMap(flatQuery);       rootMap.add(flatQuery, reader);       float boost = 1f;       while (flatQuery instanceof BoostQuery) {         BoostQuery bq = (BoostQuery) flatQuery;         flatQuery = bq.getQuery();         boost *= bq.getBoost();       }       if (!phraseHighlight && flatQuery instanceof PhraseQuery) {         PhraseQuery pq = (PhraseQuery) flatQuery;         if (pq.getTerms().length > 1) {           for (Term term : pq.getTerms()) rootMap.addTerm(term, boost);         }       }     }   }

由于WildCardQuery是MultiTermQuery的子类,所以在flatten方法中最终直接使用MultiTermQuery.TopTermsScoringBooleanQueryRewrite进行查询重写,这里的top N是MAX_MTQ_TERMS = 1024;

  //FieldQuery.java      private static final int MAX_MTQ_TERMS = 1024;      protected void flatten(       Query sourceQuery, IndexReader reader, Collection<Query> flatQueries, float boost)       throws IOException {             ..................................      ..................................             else if (reader != null) {       Query query = sourceQuery;       Query rewritten;       if (sourceQuery instanceof MultiTermQuery) {         rewritten =             new MultiTermQuery.TopTermsScoringBooleanQueryRewrite(MAX_MTQ_TERMS)                 .rewrite(reader, (MultiTermQuery) query);       } else {         rewritten = query.rewrite(reader);       }       if (rewritten != query) {         // only rewrite once and then flatten again - the rewritten query could have a speacial         // treatment         // if this method is overwritten in a subclass.         flatten(rewritten, reader, flatQueries, boost);       }       // if the query is already rewritten we discard it     }     // else discard queries   }

这里首先计算设置的size和getMaxSize(默认值1024, IndexSearcher.getMaxClauseCount())计算最终提取的命中关键字数量,这里最终是1024个;

这里省略了传入collectTerms的TermCollector匿名子类的实现,其余最终提取关键字数量有关;

  //FieldQuery.java    @Override   public final Query rewrite(final IndexReader reader, final MultiTermQuery query)       throws IOException {     final int maxSize = Math.min(size, getMaxSize());     final PriorityQueue<ScoreTerm> stQueue = new PriorityQueue<>();     collectTerms(         reader,         query,         new TermCollector() {                   ................          });      .............     return build(b);   }

这里首先获取查询字段对应的所有term集合,然后获取所有的与查询匹配的term集合,最终通过传入的collector提取关键字;

  //TermCollectingRewrite.java   final void collectTerms(IndexReader reader, MultiTermQuery query, TermCollector collector)       throws IOException {     IndexReaderContext topReaderContext = reader.getContext();     for (LeafReaderContext context : topReaderContext.leaves()) {       final Terms terms = context.reader().terms(query.field);       if (terms == null) {         // field does not exist         continue;       }        final TermsEnum termsEnum = getTermsEnum(query, terms, collector.attributes);       assert termsEnum != null;        if (termsEnum == TermsEnum.EMPTY) continue;        collector.setReaderContext(topReaderContext, context);       collector.setNextEnum(termsEnum);       BytesRef bytes;       while ((bytes = termsEnum.next()) != null) {         if (!collector.collect(bytes))           return; // interrupt whole term collection, so also don't iterate other subReaders       }     }   }

这里通过控制最终提取匹配查询的关键字的数量不超过maxSize;

          //TopTermsRewrite.java           @Override           public boolean collect(BytesRef bytes) throws IOException {             final float boost = boostAtt.getBoost();              // make sure within a single seg we always collect             // terms in order             assert compareToLastTerm(bytes);              // System.out.println("TTR.collect term=" + bytes.utf8ToString() + " boost=" + boost + "             // ord=" + readerContext.ord);             // ignore uncompetitive hits             if (stQueue.size() == maxSize) {               final ScoreTerm t = stQueue.peek();               if (boost < t.boost) return true;               if (boost == t.boost && bytes.compareTo(t.bytes.get()) > 0) return true;             }             ScoreTerm t = visitedTerms.get(bytes);             final TermState state = termsEnum.termState();             assert state != null;             if (t != null) {               // if the term is already in the PQ, only update docFreq of term in PQ               assert t.boost == boost : "boost should be equal in all segment TermsEnums";               t.termState.register(                   state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq());             } else {               // add new entry in PQ, we must clone the term, else it may get overwritten!               st.bytes.copyBytes(bytes);               st.boost = boost;               visitedTerms.put(st.bytes.get(), st);               assert st.termState.docFreq() == 0;               st.termState.register(                   state, readerContext.ord, termsEnum.docFreq(), termsEnum.totalTermFreq());               stQueue.offer(st);               // possibly drop entries from queue               if (stQueue.size() > maxSize) {                 st = stQueue.poll();                 visitedTerms.remove(st.bytes.get());                 st.termState.clear(); // reset the termstate!               } else {                 st = new ScoreTerm(new TermStates(topReaderContext));               }               assert stQueue.size() <= maxSize : "the PQ size must be limited to maxSize";               // set maxBoostAtt with values to help FuzzyTermsEnum to optimize               if (stQueue.size() == maxSize) {                 t = stQueue.peek();                 maxBoostAtt.setMaxNonCompetitiveBoost(t.boost);                 maxBoostAtt.setCompetitiveTerm(t.bytes.get());               }             }              return true;           }

通过以上分析可以看到,fvh Highlighter对multi term query的重写,直接使用MultiTermQuery.TopTermsScoringBooleanQueryRewrite,并限制只能最多提取查询关键字1024个;

五、重写可能导致的高亮问题原因分析

经过以上对查询和高亮的重写过程分析可以知道,默认情况下

query阶段提取的是命中查询的所有的关键字,具体行为可以通过rewrite参数进行定制;

Highlight阶段提取的是命中查询的关键字中的前1024个,具体行为不受rewrite参数的控制;

如果查询的字段是大文本字段,导致字段的关键字很多,就可能会出现查询命中的文档的关键字不在前1024个里边,从而导致明明匹配了文档,但是却没有返回高亮信息;

六、解决方案

  1. 进一步明确查询关键字,减少查询命中的关键字的数量,例如输入更多的字符,;
  2. 使用其他类型的查询替换multi term query;